37 research outputs found

    Perception de l'espace : paradigme de son intégration et validation expérimentale préliminaire

    Get PDF
    National audienceCette communication introduit un nouveau paradigme : l'intégration de l'espace (de sa géométrie) global à partir d'un ensemble de ses représentations tactiles partielles. Ce paradigme permet d'évaluer la compréhension par un sujet de la géométrie d'un espace plus grand (un appartement) à partir de ses représentations « tactiles » partielles (vues séparées des piÚces le constituant). Une expérimentation originale d'évaluation de ce paradigme, basée sur la navigation virtuelle, ainsi qu'un ensemble d'indices quantifiant ses différents paramÚtres, ont été proposés. Les résultats obtenus avec des sujets sains aux yeux bandés montrent qu'une interface à stimulation tactile peut constituer un bon support pour la compréhension et l'apprentissage de la géométrie de l'espace global en vue de la mobilité. Mots clés-perception de la géométrie de l'espace, attributs spatiaux de segments de droites, allolocalisation, autolocalisation, qualité du dessin, qualité de l'intégration de l'espace, navigation virtuelle, interface tactile, perception tactile

    High-performance AES-128 algorithm implementation by FPGA-based SoC for 5G communications

    Get PDF
    In this research work, a fast and lightweight AES-128 cypher based on the Xilinx ZCU102 FPGA board is presented, suitable for 5G communications. In particular, both encryption and decryption algorithms have been developed using a pipelined approach, so enabling the simultaneous processing of the rounds on multiple data packets at each clock cycle. Both the encryption and decryption systems support an operative frequency up to 220 MHz, reaching 28.16 Gbit/s maximum data throughput; besides, the encryption and decryption phases last both only ten clock periods. To guarantee the interoperability of the developed encryption/decryption system with the other sections of the 5G communication apparatus, synchronization and control signals have been integrated. The encryption system uses only 1631 CLBs, whereas the decryption one only 3464 CLBs, ascribable, mainly, to the Inverse Mix Columns step. The developed cypher shows higher efficiency (8.63 Mbps/slice) than similar solutions present in literature

    Sensors Allocation and Observer Design for Discrete Bilateral Teleoperation Systems with Multi-Rate Sampling

    Get PDF
    This study addresses sensor allocation by analyzing exponential stability for discrete-time teleoperation systems. Previous studies mostly concentrate on the continuous-time teleoperation systems and neglect the management of significant practical phenomena, such as data-swap, the effect of sampling rates of samplers, and refresh rates of actuators on the system’s stability. A multi-rate sampling approach is proposed in this study, given the isolation of the master and slave robots in teleoperation systems which may have different hardware restrictions. This architecture collects data through numerous sensors with various sampling rates, assuming that a continuous-time controller stabilizes a linear teleoperation system. The aim is to assign each position and velocity signals to sensors with different sampling rates and divide the state vector between sensors to guarantee the stability of the resulting multi-rate sampled-data teleoperation system. Sufficient Krasovskii-based conditions will be provided to preserve the exponential stability of the system. This problem will be transformed into a mixed-integer program with LMIs (linear matrix inequalities). These conditions are also used to design the observers for the multi-rate teleoperation systems whose estimation errors converge exponentially to the origin. The results are validated by numerical simulations which are useful in designing sensor networks for teleoperation systems

    Leak Detection in Waterworks: Comparison Between STFT and FFT with an Overcoming of Limitations

    Get PDF
    AbstractDetection of leakages in pipelines is a matter of continuous research because of the basic importance for a waterworks system is finding the point of the pipeline where a leak is located and − in some cases − a nature of the leak. There are specific difficulties in finding leaks by using spectral analysis techniques like FFT (Fast Fourier Transform), STFT (Short Term Fourier Transform), etc. These difficulties arise especially in complicated pipeline configurations, e.g. a zigzag one. This research focuses on the results of a new algorithm based on FFT and comparing them with a developed STFT technique. Even if other techniques are used, they are costly and difficult to be managed. Moreover, a constraint in the leak detection is the pipeline diameter because it influences accuracy of the adopted algorithm. FFT and STFT are not fully adequate for complex configurations dealt with in this paper, since they produce ill-posed problems with an increasing uncertainty. Therefore, an improved Tikhonov technique has been implemented to reinforce FFT and STFT for complex configurations of pipelines. Hence, the proposed algorithm overcomes the aforementioned difficulties due to applying a linear algebraic approach

    An overview of technologies and devices against COVID-19 pandemic diffusion: virus detection and monitoring solutions

    Get PDF
    none5siThe year 2020 will remain in the history for the diffusion of the COVID-19 virus, originating a pandemic on a world scale with over a million deaths. From the onset of the pandemic, the scientific community has made numerous efforts to design systems to detect the infected subjects in ever-faster times, allowing both to intervene on them, to avoid dangerous complications, and to contain the pandemic spreading. In this paper, we present an overview of different innovative technologies and devices fielded against the SARS-CoV-2 virus. The various technologies applicable to the rapid and reliable detection of the COVID-19 virus have been explored. Specifically, several magnetic, electrochemical, and plasmonic biosensors have been proposed in the scientific literature, as an alternative to nucleic acid-based real-time reverse transcription Polymerase Chain Reaction (PCR) (RT-qPCR) assays, overcoming the limitations featuring this typology of tests (the need for expensive instruments and reagents, as well as of specialized staff, and their reliability). Furthermore, we investigated the IoT solutions and devices, reported on the market and in the scientific literature, to contain the pandemic spreading, by avoiding the contagion, acquiring the parameters of suspected users, and monitoring them during the quarantine period.openR. de Fazio, A. Sponziello, D. Cafagna, R. Velazquez, P. Viscontide Fazio, R.; Sponziello, A.; Cafagna, D.; Velazquez, R.; Visconti, P

    Wearable devices and IoT applications for symptom detection, infection tracking, and diffusion containment of the COVID-19 pandemic: a survey

    Get PDF
    Until a safe and effective vaccine to fight the SARS-CoV-2 virus is developed and available for the global population, preventive measures, such as wearable tracking and monitoring systems supported by Internet of Things (IoT) infrastructures, are valuable tools for containing the pandemic. In this review paper we analyze innovative wearable systems for limiting the virus spread, early detection of the first symptoms of the coronavirus disease COVID-19 infection, and remote monitoring of the health conditions of infected patients during the quarantine. The attention is focused on systems allowing quick user screening through ready-to-use hardware and software components. Such sensor-based systems monitor the principal vital signs, detect symptoms related to COVID-19 early, and alert patients and medical staff. Novel wearable devices for complying with social distancing rules and limiting interpersonal contagion (such as smart masks) are investigated and analyzed. In addition, an overview of implantable devices for monitoring the effects of COVID-19 on the cardiovascular system is presented. Then we report an overview of tracing strategies and technologies for containing the COVID-19 pandemic based on IoT technologies, wearable devices, and cloud computing. In detail, we demonstrate the potential of radio frequency based signal technology, including Bluetooth Low Energy (BLE), Wi-Fi, and radio frequency identification (RFID), often combined with Apps and cloud technology. Finally, critical analysis and comparisons of the different discussed solutions are presented, highlighting their potential and providing new insights for developing innovative tools for facing future pandemics

    Acute-Onset Central Serous Retinopathy After Immunization with COVID-19 mRNA Vaccine

    Get PDF
    Purpose We report the case of a 33-year-old male who presented with unilateral central serous retinopathy three days after the injection of a COVID-19 vaccine. Observations A 33-year-old healthy Hispanic male referred to the ophthalmology service due to blurry vision and metamorphopsia in the right eye without any flashes, floaters, eye redness or pain. The patient reported that 69 hours prior to presentation he received the first dose of the Pfizer-BioNTech BNT162b2 mRNA COVID-19 vaccine. He denied any past ocular history or pertinent medical history. He does not take any medicines and denies stressful factors in his life. The clinical examination and imaging tests were consistent with central serous retinopathy that resolved in three months. Conclusions and importance This is the first report of an ocular complication potentially associated with a COVID-19 vaccination. Our case contributes information of a side effect potentially related to this new vaccine

    Detection of river flow slow-down through sensing system and quasi-real time imaging

    Get PDF
    Flow slow-down in rivers and artificial canals is a basic aspect to be monitored and kept strictly under control. Flow slow-downs can become a major concern in the event of extreme phenomena. The paper illustrates an advanced image processing method that uses particle tracking velocimetry in conjunction with a monadic approach to better characterize water flow in the presence of waste or debris that block normal water flow within a river. An high-speed camera installed beneath a bridge takes periodic images of the water flow. The measured water level and the images taken by the camera are sent to a central system in real-time. Results demonstrate the capability of the proposed method to accurately detect the presence of debris from the measured water flow
    corecore